

FIELD-PROVEN COTS, MOTS AND CUSTOM MILITARY POWER SOLUTIONS

M7318 SERIES

DC/DC POWER SUPPLY

PRODUCT HIGHLIGHTS

- MINIATURE
- HIGH DENSITY
- SINGLE OUTPUT
- DC/DC CONVERTER
- UP TO 200W

Applications

Military (Airborne, ground-fix, shipboard), Ruggedized, Telecom, Industrial Power Supply

DC Output

Efficiency

temperature)

Special Features

- Wide input range
- Input / Output isolation
- High efficiency up to 90%
- Over 40dB ripple rejection
- EMI filters included

Electrical Specifications

<u>DC Input</u> 18 to 48 V_{DC}

Transient protection

IAW MIL-STD-1275A, M-STD-704A (no operation, no damage) *Output Voltage Regulation* Up to ±1% (no load to full load, -55°C to +85°C, and over input voltage range).

Ripple and Noise

Less than 100 mV_{p-p}, typical (max. 1%) without external capacitance. When connected to system capacitance ripple drops significantly.

• Remote sense compensation

- Current sharing available
- <u>Fixed</u> switching freq. (250 kHz)
- External sync. capability

Voltage range: 3.3 to 50 V_{DC}

Typical: 84% (at 28V_{DC} output,

nominal input, full load, room

Transient Over-and-undershoot

less than 5% of output voltage.

Output recovers to steady stated within less 0.1 ms, typically.

Output change at load transient of 10

to 100% with $T_r \& T_f$ of max 30 µs is

Current range: 0 to 18 A

Power range: 0 to 200 W

- Remote inhibit (on/off)
- Non-latching protections:
 - Overload / short-circuit
 Input OV/UV lockout
 - Output over-voltage
 - Over temperature

<u>Isolation</u>

Input to Output: 200 V_{DC} Input to Case: 200 V_{DC} Output to Case: 100 V_{DC}

<u>EMC</u>

Designed to meet MIL-STD-461F* CE101, CE102, CS101, CS114, CS115, CS116, RE101, RE102, RS101, RS103

Turn on Transient

No overshoot.

 * Compliance achieved with 5 μ H LISN, shielded harness and static resistive load.

Protections[†]

Input Output General • Input Reverse Polarity: • Active Over-Voltage (Hiccup): • Over Temperature Protection: Protection for unlimited time Secondary control circuit takes over Output shuts down if base plate if output voltage exceeds 110% ± 5% • Under-Voltage Lock-Out: temperature exceeds $+105^{\circ}C \pm 5^{\circ}C$. Unit shuts down below $16V \pm 1.5V$. of nominal voltage. The output Automatic recovery when baseplate • Over-Voltage Lock-Out: voltage go hiccup. temperature returns to below +95°C • Passive Over-Voltage: Unit shuts down above $52V \pm 2V$. ± 5°C. Zener diode installed on output terminals, selected at 120% ± 10% of nominal voltage. • Other forms of protection CV/CC, foldback **Environmental Conditions**

Meets MIL-STD-810F

Temperature

Operating: -55 °C to +85 °C (at baseplate) Storage: -55 °C to +125 °C

<u>Humidity</u>

Method 507.4 Procedure I Up to 95% RH

<u>Altitude</u>

Method 500.4 Procedures I & II Up to 70,000 ft. Operational

Vibration (random) Method 514.5 Category 24 – General minimum integrity exposure IAW Figure 514.5C-17 1 hour per axis. <u>Salt Fog</u> Method 509.4

<u>Shock</u> Method 516.5 Procedure I – Functional shock Saw-tooth, 20 g peak, 11 ms

Reliability

150,000 hours, calculated per MIL-HDBK-217F Notice 2 at +85 °C baseplate, Ground Fix conditions.

Environmental Stress Screening (ESS)

Including random vibration and thermal cycles is also available. Please consult factory for details.

^{*t*} Thresholds and protections can be modified / removed – please consult factory.

Pin Assignment

Connector: RM272-030-322-2900 or eq.

Mating connector options (Other options available - consult factory):

- Solder cup sockets: RM242-030-241-5900 or eq.
- Removable crimp sockets: RM242-030-571-5900 or eq.

Pin #	Function		Pin #	Function]	Pin #	Function	
1	OUTPUT	•	11	INPUT	•		21	OUTPUT RTN	•
2	OUTPUT	•	12	INPUT RTN	•		22	+SENSE	0
3	OUTPUT	•	13	INPUT RTN	•		23	INPUT	•
4	OUTPUT RTN	•	14	SYNC OUT	•		24	INPUT	•
5	OUTPUT RTN	•	15	SYNC IN	0		25	INPUT	•
6	OUTPUT RTN	•	16	OUTPUT	•		26	INPUT RTN	•
7	CURRENT SHARE	0	17	OUTPUT	•		27	INPUT RTN	•
8	SENSE RTN	8	18	OUTPUT	•		28	INPUT RTN	•
9	POWER GOOD	•	19	OUTPUT RTN	•]	29	INHIBIT	0
10	INPUT	•	20	OUTPUT RTN	•		30	SIGNAL RTN	0

<u>Note</u>: All pins with identical function/designation should be connected together for optimal performance.

Functions and Signals

INHIBIT

The **INHIBIT** signal is used to turn the power supply ON and OFF. To turn the power supply OFF, apply a TTL "0" signal or SHORT to **SIGNAL RTN**. To turn the power supply ON, apply a TTL "1" signal or leave this pin OPEN. If not used (always ON), leave this pin OPEN. This signal is referenced to **SIGNAL RTN**.

SYNC IN

The **SYNC IN** signal is used to allow the power supply frequency to sync with the system frequency. The system frequency should be 250 kHz \pm 10 kHz. When not connected the power supply will work at 250 kHz \pm 10 kHz. This signal is referenced to **SIGNAL RTN**.

SYNC OUT

The **SYNC OUT** signal can be used to synchronize the system to the power supply's clock. This signal is referenced to **SIGNAL RTN**.

SIGNAL RTN

The **SIGNAL RTN** is referenced to **IN RETURN**. This is used as grounding for **SYNC IN**, **INHIBIT** and **SYN OUT** signals.

SENSE

The SENSE is used to achieve accurate load regulations at load terminals (this is done by connecting the pins directly to the load's terminals). The use of remote sense has a limit of voltage dropout between converter's output and load terminals up to 0.5V.

When not used connect SENSE to OUT and SENSE RTN to OUT RTN.

CURRENT SHARE (Pin #7)

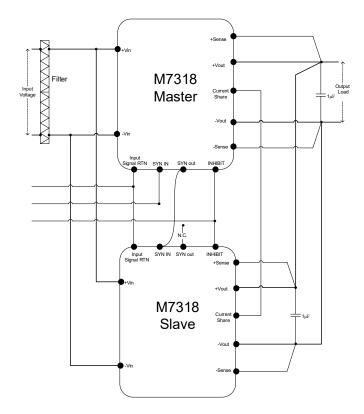
The **CURRENT SHARE** signal is used to connect the power supply in parallel to other power supplies and have them divide equally the power between one another.

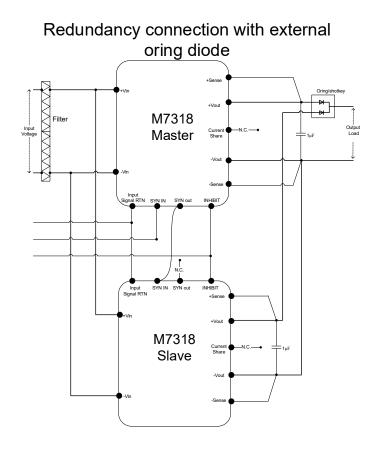
Connect all **CURRENT SHARE** signals of all paralleled power supplies together.

This signal is referenced to **SENSE RTN** (pin #8).

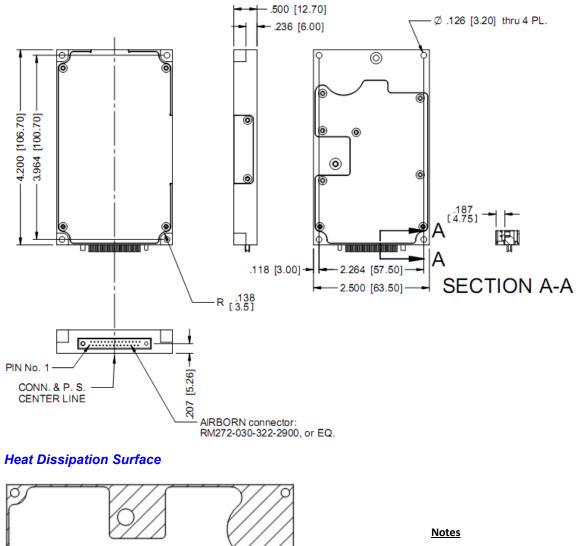
POWER GOOD (Pin #9)

The VOLTS GOOD TTL signal is used to indicate if the output voltage is within the calibrated tolerances (typical 5%).


TTL "1"- output is within the required tolerances.


TTL "0" - output is not within the required tolerances.

This signal is referenced to **SENSE RTN** (pin #8).


Typical Connection Diagram

Parallel connection with current share

Outline Drawing

- Dimensions are in Inches [mm]
 Tolerance is:
 - .XX ±.02 IN
 - $.XXX \pm .01$ IN
- 3. Weight: Approx. 150gr (5.3 Oz)

Note: Specifications are subject to change without prior notice by the manufacturer

Dissipation Area

2.99 in²

(1930 mm²)