



# M4013 SERIES DC/DC POWER SUPPLY



## **PRODUCT HIGHLIGHTS**

- VITA 62 COMPLIANT
- 3U VPX FORM FACTOR
- SIX OUTPUTS
- DC/DC CONVERTER
- 350W
- Input Options:
  - o MIL-STD-704
- Cyber secure

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2



 Doc: DS\_M4013 Series
 Rev C
 Feb 24, 2025
 Page 1 from 12





## **Applications**

Military, Ruggedized, Telecom, Industrial

## **Special Features**

- VITA 62 compliant
- Wide input range
- Remote sense
- Fixed switching frequency (220khz)
- External synchronization capability
- Indefinite short circuit Protection
- Over-voltage shutdown with auto-recovery
- Reverse battery protection
- Over temperature shutdown with auto-recovery
- EMI filters included
- I2C communication

#### **Environmental**

Design to Meet MIL-STD-810G

#### **Temperature**

Operating: -55°C to +85°C at unit edge

Storage: -55°C to +125°C

#### Altitude

Method 500.5, Procedure I & II Storage/Air

Transport: 40 Kft

Operation/Air carriage: 70 Kft

#### Humidity

Method 507.5, Up to 95% RH

#### **Fungus**

Does not support fungus growth, in accordance with the guidelines of MIL- STD-454, Requirement 4.

#### Shock

Method 516.6

40g, 11msec saw-tooth (all directions)

#### Vibration

Vibration: Figure 514.6E-1. General minimum integrity exposure. (1 hour per axis.)

## Salt Fog:

Method 509.5

Reliability: 510,000 Hours, calculated IAW MILHDBK-217F Notice 2 at +65  $^{\circ}$ C, GF.

Note: Environmental Stress Screening (ESS) Including random vibration and thermal cycles is also available. Please consult factory for details.

# **Electrical Specifications**

#### DC Input

18 to 48 V<sub>DC</sub>

Options:

- 1) MIL-STD-704 (A-F) Normal and Abnormal Steady State
- 2) MIL-STD-704(A-F) transients Up to 50V, 80V.
- 3) MIL-STD-704(A-F) Transients Under 18V and Starting transients.

#### **Efficiency**

Up to 85 % (Full load room temperature)

## **EMC**

Design to meet with MIL-STD 461F(5μH LISN): CE101, CE102, CS101, CS114, CS115, CS116

## <u>Load Transient Overshoot and</u> Undershoot

Output dynamic response of less than 5% at load Step of 60%-90%. Output returns to regulation in less than 1mSec

#### Ripple and Noise

Typically, less than  $50mV_{p-p}$  (max.  $1\%_p$ ). Measured across a  $0.1\mu F$  capacitor and  $10\mu F$  capacitor on load at Input Voltage of 18V-36V, all Temperature Range.

## **Communication**

I2C protocol available for voltages, currents and temperature for all positive voltages (GAx, SCL, SDA)

## DC Output

VS1: 12V, up to 20A VS2: 3.3V, up to 5A VS3: 5V, up to 12A 12V\_Aux: 12V, up to 1A -12V\_Aux: -12V, up to 1A 3.3V\_Aux: 3.3V, up to 5A

# <u>Isolation</u>

200V Input to Output & Chassis. 100V Output to Chassis

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2



Doc: DS\_M4013 Series | Rev C | Feb 24, 2025 Page 2 from 12





#### **Protections**

#### Input

## • Inrush Current Limiter

Peak value of 5 x  $I_{\text{IN}}$  for initial inrush currents lasting more than  $50\mu\text{Sec.}$ 

#### • Under Voltage

Unit shuts down when input steady state voltage drops
Automatic restart when input voltage returns to nominal range.

#### • Over Voltage Lock-Out

Unit shuts down when input steady state voltage rise above  $55 \pm 2V_{DC}$ . Automatic restart when input voltage returns to nominal range.

Milpower Source, Inc. • Belmont, NH, USA • P: (603) 267-8865

Email: sales@milpower.com • Website: www.milpower.com • CAGE: 5YWX2

#### **Output**

# Passive or Active over voltage protection on VS2, VS3, 3.3Vaux and -12Vaux

Transorb, selected at  $25\% \pm 5\%$  above nominal voltage, is placed across the output for passive voltage limit.

## Active over voltage protection on VS1 and 12Vaux

20% ± 5% above nominal voltage. Automatic recovery when output voltage drops below threshold.

## • Overload / Short-Circuit Protection

VS#: Continuous protection (10-30% above maximum current) for unlimited time (Hiccup). Automatic recovery when overload/short circuit removed.

12Vaux: typical 1.5A to 2A -12Vaux: typical 2.5A to 3A 3.3Vaux: typical 8A

#### General

Over Temperature Protection
 Automatic shutdown
 at internal temperature of 95 ± 5°C.

 Automatic recovery when

temperature drops below 90 ±5°C.

Note: Thresholds and protections can be modified / removed (please consult factory)

SOURCE

Doc: DS\_M4013 Series | Rev C | Feb 24, 2025 Page 3 from 12







# Functions and Signals - According to VITA 62

| Signal No. | Signal Name | Туре          | Description                                                                                                                                                                               |
|------------|-------------|---------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1          | FAIL*       | Output        | Indicates to other modules in the system that a failure has occurred in one of the outputs. Please refer to Figure 2                                                                      |
|            |             |               | This signal is referenced to <b>SIGNAL RTN</b> .                                                                                                                                          |
| 2          | SYSRESET*   | Output        | Indicates to other modules in the system that all outputs are within their working level. Please refer to Figure 2                                                                        |
|            |             |               | This signal is referenced to <b>SIGNAL RTN</b> .                                                                                                                                          |
| 3          | INHIBIT*    | Input         | Controls power supply outputs. This signal in conjunction with <b>INHIBIT</b> controls the outputs. Please refer to Table 1 and Figure 1 This signal is referenced to <b>SIGNAL RTN</b> . |
| 4          | ENABLE*     | Input         | Controls power supply outputs. This signal in conjunction with <b>INHIBIT</b> controls the outputs. Please refer to Table 1 and Figure 1 This signal is referenced to <b>SIGNAL RTN</b> . |
| 5          | GA0*, GA1   | Input         | Used for geographical addressing. GA1 is the most significant bit and GA0 is the least significant bit.                                                                                   |
| 6          | SCL, SDA    | Bidirectional | I2C bus Clock and Data respectively. Through this bus the voltage and temperature readouts can be shared.                                                                                 |
| 7          | REF_CLK     | Input         | The Sync signal is used to allow the power supply frequency to sync with the system frequency. (Optional)                                                                                 |
| 8          | VOUT SENSE  | Input         | The SENSE is used to achieve accurate load regulations at load terminals (this is done by connecting the pins directly to the load's terminals).                                          |

MILPOWER SOURCE

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2







Table 1 - Inhibit and Enable Functionality

| INHIBIT*              | Low | Low  | High | High |
|-----------------------|-----|------|------|------|
| ENABLE*               | Low | High | Low  | High |
| VS1, VS2, VS3,±12VAux | OFF | OFF  | ON   | OFF  |
| 3.3V_AUX              | ON  | OFF  | ON   | OFF  |

Figure 1 - Inhibit and Enable Input stage



Figure 2 – SysReset and Fail Bit output stage



MILPOWER

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2





## **Detailed Information**

## 1. M4013 Input Voltage Operation.

The M4013 steady state operation voltage is 18V to 48V and will continuously work up to 50V Input line. When Configurable to support MIL-STD 704/1275 transients or surges, the unit will shut down when input voltage rises above 60V or under 16V for more than 2 sec and immediate shut down under 12V or above 100V Input. Power supply automatically recover when it's Input goes back to normal steady state line.

## 2. Outputs Voltage Regulation

The M4013 contains accurate internal sense lines to keep output voltage at less than 4% regulation for all Line/ Load and temperature range (see Table 2).

| Output           | 12V/15A       | 5V/12A    | 3.3V/5A     | 3.3VAux/5A | 12VAux/1A      | (-)12VAux/1A       |
|------------------|---------------|-----------|-------------|------------|----------------|--------------------|
| Voltage<br>Range | 11.85 - 12.15 | 4.9 - 5.1 | 3.28 - 3.42 | 3.2 - 3.4  | VS1 - VS1-0.2V | (-)11.8 - (-)12.15 |

Table 2: Outputs voltage regulation. VIN 18V - 48V, Temperature -55°C - 85°C

#### 2.1. Sense Lines

*Sense Lines* are provided for VS1, VS2 and VS3 output to compensate line voltage drop. *Sense Lines* proper connection is shown in Figure 3.

Each VSx output has its own *Sense Lines*, additional common *Sense RTN Line* is provided for all VSx Outputs (VITA 62 Standard). Contact Factory for Sense configuration different than the VITA 62 standard



Figure 3: M4013 Sense line connection

## 3 Output Power

The M4013 can deliver up to 350W steady State at all temperature and input range.

| Total Power | 12V/20A | 5V/12A | 3.3V/5A | 3.3VAux/5A    | 12VAux/1A   | (-)12VAux/1A    |
|-------------|---------|--------|---------|---------------|-------------|-----------------|
| Output      | 124/207 | 34/12/ | 3.34/3/ | 3.3 V AUX/ 3A | 12 V AUN IA | (-)12 V AUX/ 1A |

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2

NILPOWER SOURCE

Doc: DS\_M4013 Series | Rev C | Feb 24, 2025 Page 6 from 12







## 4 Advanced I2C Protocol

# **Electrical Parameters**

Vcc: 3.3Vdc
Pull-up: 10kOhm
Input Capacitance 330pF

# **Slave Device Addressing**

- 256 address spaces

- Baud rate: 200kHz maximum

- 7 Bit Protocol

- Support Slot Addressing per VITA 62

|             | MSB |         |          |         |         |         |         | LSB |
|-------------|-----|---------|----------|---------|---------|---------|---------|-----|
| Slot Number | A6  | A5/*GAP | A4/*GA41 | A3/*GA3 | A2/*GA2 | A1/*GA1 | A0/*GA0 | R/W |
| Slot0       | 1   | 0       | 0        | 0       | 0       | 0       | 0       |     |
| Slot1       | 1   | 0       | 0        | 0       | 0       | 0       | 1       |     |
| Slot2       | 1   | 0       | 0        | 0       | 0       | 1       | 0       |     |
| Slot3       | 1   | 0       | 0        | 0       | 0       | 1       | 1       |     |

<sup>\*</sup> Slot location is determined by GAx per VITA 62.

# **Communication Supported**

Read Command – 21Hex, deliver 64Bytes of Data. (More commands are available by request) The communication starts when the master sends a start followed by the unit slave address, command, checksum and a stop. A second start followed by the slave address and a read will be followed by a 64 Bites response.

| ľ | S | Slave Address | R/W | Α | Command | Α | Check sum | Α | Р |
|---|---|---------------|-----|---|---------|---|-----------|---|---|
| ľ |   | A6:A0         | 0   | 0 | 21 Hex  | 0 | DF Hex    | 0 |   |

| S | Slave Address | R/W | Α | DATA  | Α | DATA  | Α | DATA  | Α | • • • | DATA  | Α | Check sum | N/A | Р |
|---|---------------|-----|---|-------|---|-------|---|-------|---|-------|-------|---|-----------|-----|---|
|   | A6:A0         | 1   | 0 | D7:D0 | 0 | D7:D0 | 0 | D7:D0 | 0 |       | D7:D0 | 0 | D7:D0     | 1   |   |

Command – 21Hex read all 64 Bytes

S - Start

P- Stop

Master Transmit Unit Transmit

SOURCE

Doc: DS\_M4013 Series | Rev C | Feb 24, 2025







# **Memory Space**

| lesponse Byte<br># | Data Type               | Meaning                 | Interpretation                                          | Reading Range |
|--------------------|-------------------------|-------------------------|---------------------------------------------------------|---------------|
|                    | Integer, MSB First      | cho of Command          |                                                         | 1 Hex         |
|                    | Integer, MSB First      | /A                      |                                                         | 0 Hex         |
|                    | Integer, MSB First      | emperature              | (C°)=+/- 7bit Dec                                       | 55 to 125 °C  |
|                    | Integer, MSB First      | eserved                 | 0Hex                                                    |               |
| -5                 | Integer, MSB First      | O1 12V Voltage          | (out) = Data/ m2                                        | 0.48V         |
| -7                 | Integer, MSB First      | O2 12V Voltage          | O2 12V Voltage (out) = Data/ m2                         |               |
| -9                 | Integer, MSB First      | O3 12V Voltage          | (out) = Data/ m2                                        | 0.48V         |
| 0-11               | Integer, MSB First      | 3.3V Aux Voltage        | (out) = Data/ m2                                        | 0.48V         |
| 2-13               | Integer, MSB First      | 2VAux Voltage           | (out) = Data/ m2                                        | ptional       |
| 4-15               | Integer, MSB First      | )12V Aux Voltage        | (out) = Data/ m2                                        | ptional       |
| 6-17               | Integer, MSB First      | 2V Total Current        | (out) = Data/ m3                                        | 0A            |
| 8-19               | Integer, MSB First      | 2V Total Current - Copy | (out) = Data/ m3                                        | 0A            |
| 0-21               | Integer, MSB First      | 2V Total Current - Copy | (out) = Data/ m3                                        | 0A            |
| 2-23               | Integer, MSB First      | .3VAux Current          | (out) = Data/ m5                                        | 0A            |
| 4-35               | Integer, MSB First      | 2V Aux Current          | (out) = Data/ m4                                        | ptional       |
| 6-27               | Integer, MSB First      | )12V Aux Current        | (out) = Data/ m4                                        | ptional       |
| 8-29               | Integer, MSB First      | eserved                 | 0Hex                                                    |               |
| 0-31               | Integer, MSB First      | eserved                 | 0Hex                                                    |               |
| 2-51               | haracter String (ASCII) | art Number              | 14013-xxx* (Note1)                                      | 0 Characters  |
| 2-53               | ecimal, MSB First       | erial Number, 2MSB Dig  | ,X Dec (Note2)                                          | ptional       |
| 4-55               | ecimal, MSB First       | erial Number, 2LSB Dig  | ,X Dec (Note2)                                          | ptional       |
| 6-57               | ecimal, MSB First       | ate Code                | /eek, Year (Note3)                                      | ptional       |
| 8-59               | haracter String (ASCII) | ardware Rev             | 01 & B02 Boards (note4)                                 | Characters    |
| 0-61               | ecimal, MSB First       | rmware Rev              | ,X,X,X Dec (Note5)                                      | digits        |
| 2                  | Integer, MSB First      | eserved                 |                                                         | A Hex         |
| 3                  | Integer, MSB First      | ero Checksum            | alue required to make the s<br>62 added to a multiple o | •             |

# Note:

 $M_2 = 20.48 / 2^{16}-1$ 

 $M_3 = 40 / 2^{16} - 1$ 

 $M_4 = 10 / 2^{16} - 1$ 

 $M_5 = 20 / 2^{16}-1$ 

\*Matching unit part number

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2









# Notes 1 to 5:

1. Part Number Example: M4065-4

| Byte No'  | 32 | 33 | 34 | 35 | 36 | 37  | 38 | 39-51 |
|-----------|----|----|----|----|----|-----|----|-------|
| Character | M  | 4  | 0  | 6  | 5  | (-) | 4  | 0     |
| Hex       | 4D | 34 | 30 | 36 | 35 | 2D  | 34 | 00    |

2. Serial Number Example: 25

| Byte No'   | 52     |        | 53     |        | 54     |        | 55     |        |
|------------|--------|--------|--------|--------|--------|--------|--------|--------|
| Dec Number | 0      | 0      | 0      | 0      | 0      | 0      | 2      | 5      |
| Binary     | "0000" | "0000" | "0000" | "0000" | "0000" | "0000" | "0010" | "0101" |

3. Date Code Example: week 35 of 2018

| Byte No'   | 56     |        | 57     | 57     |  |  |
|------------|--------|--------|--------|--------|--|--|
| Dec Number | 3      | 5      | 1      | 8      |  |  |
| Binary     | "0011" | "0101" | "0001" | "1000" |  |  |

4. Hardware Rev Example: B01 Rev (-), B01 Rev A

| Byte No'  | 58  | 59 |
|-----------|-----|----|
| Character | (-) | A  |
| Hex       | 2D  | 41 |

5. Firmware Rev Example: 2.1.0.0

| Byte No'   | 60     |        | 61     |        |
|------------|--------|--------|--------|--------|
| Dec Number | 2      | 1      | 0      | 0      |
| Binary     | "0010" | "0001" | "0000" | "0000" |

Milpower Source, Inc. • Belmont, NH, USA • P: (603) 267-8865

Email: sales@milpower.com • Website: www.milpower.com • CAGE: 5YWX2



Doc: DS\_M4013 Series | Rev C | Feb 24, 2025 Page 9 from 12





# **Pin Assignment**



| 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 | 6450849-7 |    |                   |                   | PART NUMBER |        |
|-----------------------------------------|-----------|----|-------------------|-------------------|-------------|--------|
|                                         | A         | В  | n                 | D                 | ROWS        |        |
|                                         |           |    |                   | ъ                 | POWER       |        |
| 3                                       |           |    |                   | P2                |             |        |
|                                         | 5         |    |                   |                   | LPI         | 20     |
| ľ                                       | 05        | R5 | <b>Y</b> 5        | 25                | -           |        |
|                                         | 05        | R5 | 15                | 25                | 2           |        |
| I                                       | 05        | R5 | Y5 Y5 Y5 Y5 Y5 Y5 | 25 25 25 25 25 25 | Ç           |        |
| ľ                                       | 95        |    | 75                | 75                | 4           | SIGNAL |
| l                                       | 05        | 25 | 75                | 25                | Ch          | NAL    |
|                                         | 05        | R5 | 75                | 25                | on.         |        |
|                                         | 05        | 85 | 15                | 25                | 7           |        |
|                                         | 0         | R5 | 15                | 25                | 00          |        |
|                                         | =         |    |                   |                   | Р3          |        |
|                                         | $\equiv$  |    |                   |                   | P 4         | P      |
|                                         |           | =  |                   |                   |             | POWER  |
|                                         |           |    |                   |                   | P5 LP2 P6   | R      |
|                                         | =         |    |                   |                   | P 6         |        |









| Pin Number | Pin Name     |  |  |
|------------|--------------|--|--|
| P1         | -DC_IN       |  |  |
| P2         | +DC_IN       |  |  |
| LP1        | CHASSIS      |  |  |
| P3         | VS3          |  |  |
| P4         | POWER_RETURN |  |  |
| P5         | POWER_RETURN |  |  |
| LP2        | VS2          |  |  |
| P6         | VS1          |  |  |
| A8         | VS1_SENSE    |  |  |
| B8         | VS2_SENSE    |  |  |
| C8         | VS3_SENSE    |  |  |
| D8         | SENSE_RETURN |  |  |
| A7         | N.C          |  |  |
| В7         | N.C          |  |  |
| C7         | N.C          |  |  |
| D7         | SIG_RTN      |  |  |
| A6         | N.C          |  |  |
| В6         | N.C          |  |  |
| C6         | -12V_AUX     |  |  |
| D6         | SYSRESET*    |  |  |
| A5         | GA0*         |  |  |
| B5         | GA1*         |  |  |
| C5         | SCL          |  |  |
| D5         | SDA          |  |  |
| A4         | +3.3V_AUX    |  |  |
| B4         | +3.3V_AUX    |  |  |
| C4         | +3.3V_AUX    |  |  |
| D4         | +3.3V_AUX    |  |  |
| A3         | N.C          |  |  |
| В3         | +12V_AUX     |  |  |
| C3         | N.C          |  |  |
| D3         | N.C          |  |  |
| A2         | N.C          |  |  |
| B2         | FAIL*        |  |  |
| C2         | INHIBIT*     |  |  |
| D2         | ENABLE*      |  |  |
| A1         | REF_CLK+     |  |  |
| B1         | N.C          |  |  |
| C1         | N.C          |  |  |
| D1         | N.C          |  |  |

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2



Doc: DS\_M4013 Series | Rev C | Feb 24, 2025





# **Outline Drawing**



### **Notes**

- Dimensions are in Inches [mm]
- 2. Tolerance is:  $.XX \pm 0.02 \text{ IN} \\ .XXX \pm 0.008 \text{ IN}$
- 3. Weight: Approx. 690 g (24.34) oz
- 4. 3D model available

Note: Specifications are subject to change without prior notice by the manufacturer

**Milpower Source, Inc.** • Belmont, NH, **USA** • P: (603) 267-8865 Email: <a href="mailto:sales@milpower.com">sales@milpower.com</a> • Website: <a href="mailto:www.milpower.com">www.milpower.com</a> • CAGE: 5YWX2



Doc: DS\_M4013 Series | Rev C | Feb 24, 2025